576 research outputs found

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Silicon detector for a Compton Camera in Nuclear Medical Imaging

    Get PDF
    Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to 10510^5~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (4399m^{\rm 99m}_{43}Tc) and americium (95241^{241}_{95}Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of 4399m^{\rm 99m}_{43}Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV

    Measurement of the Quark and Gluon Fragmentation Functions in Z0Z^0 Hadronic Decays

    Get PDF
    The fragmentation functions and multiplicities in bbb\overline{b} and light quark events are compared. The measured transverse and longitudinal components of the fragmentation function allow the gluon fragmentation function to be evaluated

    Investigation of the splitting of quark and gluon jets

    Get PDF
    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation TeX . The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution TeX , with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is TeX . Due to non-perturbative effects, the data are below the expectation at small TeX . The transition from the perturbative to the non-perturbative domain appears at smaller TeX for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets

    First Measurement of the Strange Quark Asymmetry at the Z0Z^{0} Peak

    Get PDF

    Measurement of inclusive π0\pi^{0} production in hadronic Z0Z^{0} decays

    Get PDF
    An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \pm 1.0 \mbox{(syst)} and for {b \bar b}~events the number of \pi^0's is {\mathrm N(\pi^0)/ b \overline b} = 10.1 \pm 0.4 \mbox{(stat)} \pm 1.1 \mbox{(syst)} . The ratio of the number of \pi^0's in b \overline b events to hadronic Z^0 events is less affected by the systematic errors and is found to be 1.09 \pm 0.05 \pm 0.01. The measured \pi^0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the \mathrm \xi_p = \ln(1/x_p) distribution is \xi_p^{\star} = 3.90^{+0.24}_{-0.14}. The average number of \pi^0's from the decay of primary \mathrm B hadrons is found to be {\mathrm N} (B \rightarrow \pi^0 \, X)/\mbox{B hadron} = 2.78 \pm 0.15 \mbox{(stat)} \pm 0.60 \mbox{(syst)}

    Search for Neutral Heavy Leptons Produced in Z Decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm\nu_m) have been searched for using data collected by the DELPHI detector corresponding to 3.3×1063.3\times 10^{6} hadronic~Z0^{0} decays at LEP1. Four separate searches have been performed, for short-lived νm\nu_m production giving monojet or acollinear jet topologies, and for long-lived νm\nu_m giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(BR(Z0νmν)^0\rightarrow \nu_m \overline{\nu}) of about 1.3×1061.3\times10^{-6} at 95\% confidence level for νm\nu_m masses between 3.5 and 50 GeV/c2c^2. Outside this range the limit weakens rapidly with the νm\nu_m mass. %Special emphasis has been given to the search for monojet--like topologies. One event %has passed the selection, in agreement with the expectation from the reaction: %e+eˉννˉe^+e^- \rightarrow\ell \bar\ell \nu\bar\nu. The results are also interpreted in terms of limits for the single production of excited neutrinos

    Search for new phenomena using single photon events in the DELPHI detector at LEP

    Get PDF
    Data are presented on the reaction \epem~\into~\gamma + no other detected particle at center-of-mass energies, \sqs = 89.48 GeV, 91.26 GeV and 93.08 GeV. The cross section for this reaction is related directly to the number of light neutrino generations which couple to the \zz boson, and to several other phenomena such as excited neutrinos, the production of an invisible `X' particle, a possible magnetic moment of the tau neutrino, and neutral monojets. Based on the observed number of single photon events, the number of light neutrinos which couple to the \zz is measured to be N_\nu = 3.15 \pm 0.34. No evidence is found for anomalous production of energetic single photons, and upper limits at the 95\% confidence level are determined for excited neutrino production (BR < 4-9 \times 10^{-6}), production of an invisible `X' particle (\sigma < 0.1 pb), and the magnetic moment of the tau neutrino (< 5.2 \times 10^{-6} \mu_B). No event with the topology of a neutral monojet is found, and this corresponds to the limit \sigma < 0.044/\epsilon pb at the 95\% confidence level, where \epsilon is the unknown overall monojet detection efficiency
    corecore